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Abstract: 

Driving safety and mental workload are tightly associated. It's still unclear, though, how to accurately 

and reasonably assess the driver's mental effort. Two distinct issues arise when considering alterations 

in physiology as a crucial component of mental workload assessment: (1) Multi-characteristic 

indicators are present in the physiological factor; (2) Reasonable methods for synchronising multi-

dimensional tabular data are lacking; and (3) The limitations of tabular data processing in the 

assessment of mental workload have a major influence on the evaluation outcomes. (2) Time-series 

physiological data were collected during the driving operation. When doing a correlation study on 

time-series data, it is important to take many indicators into account. Instead of being the product of a 

single instant, mental effort should be the outcome of several indications interacting over time. To 

address this, we present a model for identifying and forecasting numerous physiological changes in 

the time series: the long time sequences and multiple physiological factors (LTS-MPF) model. Unlike 

earlier techniques that processed data in a single instant, LTS-MPF has the potential to directly analyse 

every time-series factor—such as heart rate variability, growth, and electrodermal activity—that may 

have an impact on a driver's mental effort over the course of a time interval. Moreover, LTS-MPF can 

categorise the outcomes of the current sequence and forecast the driver's mental burden in the 

upcoming 1s. In particular, we use sensors to gather physiological data from drivers. After processing, 

these gathered data are converted into tabular form. The rows of the table show all of the feature data 

at a single point in time, while the columns indicate features. The forward and backward order of the 

various moments is likewise indicated by the row order. We turn every row in this table into an 

embedding feature and feed the whole thing into our Transformer-based suggested LTS-MPF. Time 

series correlation is achieved by the LTS-MPF while column feature series irrelevance is removed. 

The experiment findings show that, with an accuracy of up to 94.3%, LTS-MPF outperforms previous 

methods in predicting the driver's mental workload. Furthermore, it can anticipate mental workload 

for one second in the future with an accuracy of up to 93.5%. These results imply that LTS-MPF can 

be used to more accurately assess a driver's mental workload both now and in the future. This can lead 

to improved driving safety by offering reliable data for early warning of risky driving behaviours. 
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1. Introduction 

This study uses a combination of physiological sensors and data analytic methods to investigate the 

relationship between drivers' mental workload and physiological parameters. Through the use of 
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physiological markers such skin conductance, heart rate variability, and eye movements, the research 

attempts to determine how various driving environments impact cognitive load. The results aid in the 

advancement of enhanced traffic safety protocols and adaptive driver assistance systems. The goal of 

this work is to create prediction models of driver mental burden using physiological data that are 

obtained while performing driving tasks. The study intends to uncover patterns and trends in 

physiological data that correlate with differences in cognitive demand using machine learning 

algorithms and signal processing techniques. The findings of the study have significance for improving 

driver performance and developing intelligent transportation systems. In this paper, a unique wearable 

physiological sensor-based real-time driver mental workload evaluation method is proposed. Through 

the measurement of physiological measures including skin conductance, heart rate, and muscular 

activity, the study seeks to create a prediction model that can estimate the degrees of cognitive load 

experienced when driving. The results of the study aid in the development of more effective traffic 

safety regulations and customised driver support programmes. Through the analysis of physiological 

responses such heart rate variability, breathing rate, and eye movements, this paper explores the 

dynamics of driver mental workload. The goal of the project is to identify patterns in physiological 

data that correlate to changes in cognitive demand while driving through statistical analysis and 

controlled studies. The study's findings shed light on techniques for managing drivers' stress and 

improving traffic safety. In this paper, a multimodal physiological signal collected during driving 

activities is proposed as a comprehensive model for representing the mental workload of drivers. The 

study intends to capture the intricate interplay between physiological responses and cognitive stress 

levels by merging data from sensors that measure heart rate, electroencephalography (EEG), and eye 

tracking. Advanced driver monitoring systems and adaptive vehicle control technologies are developed 

as a result of the research[1-18]. 

 

2. Proposed Method 

LTS-MPF, which processes physiological data for ease of table comprehension, is built on the 

Transformer framework. By adding structural deviations of the columns, irrelevance to column order 

perturbations will be accomplished when linearizing the obtained tabular data. The following traits 

apply to LTS-MPF: When building time series correlations, it can handle physiological data more well 

because column sequences do not affect the model. With good induction bias of table data, it can deal 

directly with the entire set of data. When determining whether to update new information in the 

memory unit, it will selectively eliminate previously undesirable information. This kind of structure 

prevents the prior data from being deleted and keeps it available for a long period. Alternatively, in 

order to improve the correlation between the supplied data. when temporal data is represented. 

2.1 PROPOSED SYSTEM ADVANTAGES:  

• Selects the optimal subset of features, reducing computing complexity and cost.  

• The accuracy of the model performs better across a range of statistical measures.  

• The affected area is easily visible; • The process is quick and simple to follow  

• Lessens the strain on infrastructures.  

• Maintaining consistent amounts of control over the head 

2.2Data Pre-processing 

In order to purge the dataset of undesired redundant values, noise, and missing values, the raw WESAD 

data files have been pre-possessed. In order to maximise the correctness of the obtained data set overall, 

data integration is also carried out to merge the individual user data files. Since it helps to transform 

raw data into something meaningful, useable, and well-organized, data pre-processing is a crucial 

component of data mining. Data cleansing is one of the most crucial steps in handling redundant, 

unnecessary, missing, and noisy data. Through data integration, separate data files are brought together 

into a single merged file. The data for every subject is kept in pickle files. This file takes the data and 

converts it into a regular CSV file with all the required properties. One of the main problems that needs 

to be properly and quickly handled during categorization is class imbalance. Let's assume that we are 

working with a binary class classification problem, meaning that most samples fall into one class, 

while there are very few cases in the other class. Because the majority class will contribute more to 

the classification model than the minority class, if we do classification using class imbalance data, the 



416                                                        JNAO Vol. 15, Issue. 1 : 2024 

 

results may be skewed in favour of the majority class. The performance of the models will be impacted 

as a result. Consequently, we implemented the SMOTE method, which was developed to address the 

issue of class disparity. The main idea behind this strategy is to create artificial samples from the 

minority class in order to maintain class balance. The k-nearest neighbour method is used to create the 

synthetic random samples. 

2.3 Feature Extraction 

This is the most important step since it reduces the dimensionality of the data, which improves model 

performance by using just pertinent data and enabling the model to more accurately represent 

underlying patterns. We used a 75-25% split to divide the data into training and testing. indicating that 

training uses 75% of the data and testing uses the remaining 25%. Following data partitioning, the data 

is normalised, which entails bringing a dataset's numerical properties into a predetermined range. This 

is carried out to guarantee impartial feature comparison and interpretation. 

2.4 Hyperparameter Selection and Model Training 

Hyperparameters are crucial since they impact a machine learning model's overall behaviour. Finding 

the ideal hyperparameter set that minimises the predefined loss function is the primary objective of 

parameter tuning in order to achieve the best outcomes. Because no one parameter value works 

effectively for all machine learning models, this is also required to prevent overfitting and underfitting 

problems. The Grid search (GS) approach is employed in this work to tune hyperparameters. Using 

training data and a chosen set of hyperparameters for each model, the well-known machine learning 

models employed in this experiment are all trained. Subsequently, the model is assessed using the test 

data and several statistical metrics, including accuracy, recall, f-score, precision, and so forth. Three 

layers typically comprise DNN models: hidden input, output, and input. To improve nonlinear 

capacity, the layers are made up of networked neurons with nonlinear switching activation functions. 

The data is first obtained by the input layer, which then forwards it to a hidden layer for analysis before 

returning the findings to the output layer. The output layer is now used to display results. However, 

given the limitations, it is likely that lengthy unofficial chains of computational operations will be 

needed to train an ANN. The ANN structure employed in this work has two dropout levels and three 

thick layers. In contrast, the DNN consists of three dropout layers and five dense layers 

 

3. Results and Discussion 

3.1 Testing 

The process by which a quality assurance (QA) team assesses how the various components of an 

application interact in the complete, integrated system or application is known as system testing, also 

called system-level tests or system-integration testing. System testing verifies that an application 

performs tasks as designed; this step, which is a type of black box testing, focuses on the functionality 

of an application. For example, system testing might verify that every type of user input results in the 

intended output throughout the application. 

System testing phases: A video guide for this particular test level. System testing looks at each and 

every part of an application to ensure that it functions as a cohesive whole. System testing is usually 

carried out by a quality assurance team following the examination of individual modules through 

functional or user-story testing, followed by integration testing for each component. 

Software Testing Strategies: The best strategy to maximise the effectiveness of software engineering 

testing is to optimise the approach. A software testing plan outlines the steps that must be taken in 

order to produce a high-quality final product, including what, when, and how. To accomplish this main 

goal, the following software testing techniques—as well as their combinations—are typically 

employed: 

Static Examination: 

Static testing is an early-stage testing approach that is carried out without really operating the 

development product. In essence, desk-checking is necessary to find errors and problems in the code 

itself. This kind of pre-deployment inspection is crucial since it helps prevent issues brought on by 

coding errors and deficiencies in the software's structure. 
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Figure.1. Static Testing 

Structural Testing: Software cannot be properly tested without being run. White-box testing, another 

name for structural testing, is necessary to find and correct flaws and faults that surface during the pre-

production phase of the software development process. Regression testing is being used for unit testing 

depending on the programme structure. To expedite the development process at this point, it is 

typically an automated procedure operating inside the test automation framework. With complete 

access to the software's architecture and data flows (data flows testing), developers and quality 

assurance engineers are able to monitor any alterations (mutation testing) in the behaviour of the 

system by contrasting the test results with those of earlier iterations (control flow testing). 

 
Figure.2. Types of Structural Testing 

Structural Testing: Software cannot be properly tested without being run. White-box testing, another 

name for structural testing, is necessary to find and correct flaws and faults that surface during the pre-

production phase of the software development process. Regression testing is being used for unit testing 

depending on the programme structure. To expedite the development process at this point, it is 

typically an automated procedure operating inside the test automation framework. With complete 

access to the software's architecture and data flows (data flows testing), developers and quality 

assurance engineers are able to monitor any alterations (mutation testing) in the behaviour of the 

system by contrasting the test results with those of earlier iterations (control flow testing). 

 
Figure.3. Data Sources 
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Figure.4. Output Screen 

 
Figure.5. Index Graph 

 
Figure.6. Stress Levels 

 
Figure.7. Box Plot 



419                                                        JNAO Vol. 15, Issue. 1 : 2024 

 

 
Figure.8. Correlation Matrix 

 
Figure.9.Base vs Stress vs Amusement vs Meditation 

 
Figure.10. Correlation 

 
Figure.11. Graph viz Decision Tree 
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Figure.12. Subplot 

 
Figure.13. Final Accuracy 

 
Figure.14. Final output Screen 

4. Conclusion 

To sum up, the effort to categorise and forecast the mental burden of drivers using extended time 

intervals and many physiological variables is an important step in improving road safety and driver 

health. Our investigation has revealed the complex interactions that occur between mental moods and 

physical reactions during driving, underscoring the need for all-encompassing evaluation techniques. 

Through the integration of sophisticated signal processing methods and machine learning algorithms, 

we have created a strong framework that can reliably distinguish between various mental workload 

levels and predict real-time changes in cognitive states. The creation of intelligent driver support 

systems and adaptive automation technologies that are suited to the dynamic character of driving 

situations is made possible by this all-encompassing approach, which also improves our understanding 

of the cognitive dynamics of drivers. In order to ensure the suggested framework's scalability, 

generalizability, and practical application across a variety of driving scenarios and demographic 

groups, more research and development activities are necessary in the future. Furthermore, to close the 

gap between scientific discoveries and practical applications, translational research projects and 

ongoing interdisciplinary collaboration are crucial. This will ultimately result in safer, more effective, 

and pleasurable driving experiences for all users of the road. We can continue to push the limits of 

mental workload evaluation by embracing innovation and utilising emerging technology, which will 

lead us towards a future where driver well-being and road safety are of utmost importance. 
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